
Machine Learning in Space: 
Seeker-1’s Intelligent Vision System 

• Seeker-1 is a NASA JSC mission to demonstrate 
technologies relevant to on-orbit inspection & servicing

• Seeker-1 (a 3U CubeSat) will be deployed from an 
Enhanced Cygnus cargo vehicle in Summer 2019
⁃ Will perform relative motion experiments around Cygnus

• UT-developed computer vision algorithms must detect and 
estimate the relative bearing of Cygnus
⁃ Must be done at > 1 Hz (with CPU only)
⁃ Must be robust to varied lighting conditions, any target 

orientation, and against varied backdrops
⁃ Must be flight-ready and integrated with the Seeker-1 

GNC system
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Seeker-1 (left) & Kenobi (right)
Credit: NASA

Northrop Grumman Enhanced Cygnus Spacecraft
Credit: NASA

Research Background
Space-Based Computer Vision
• The space environment presents many difficulties with 

respect to computer vision:
⁃ Clouds and Earth generate complex noise patterns
⁃ Lighting is inconsistent and can easily blind the camera 

or illuminate only half an object
⁃ Low computing power and time constraints can 

eliminate many solutions viable for Earth-based systems
• Non-cooperative spacecraft have no reflectors or lights to 

make detection easier

“Intelligent” Cameras on Earth
• Convolutional neural network (CNN) architectures have 

emerged as capable image classifiers
⁃ More resilient than classical computer vision algorithms 

in diverse environmental conditions
• CNNs are increasingly used in autonomous applications
• Open-source deep learning frameworks (TensorFlow, 

PyTorch, etc.) have become very powerful and popular

Neural Network Architecture & Training
• Single Shot Detector (SSD) meta-architecture chosen for 

speed and image processing capabilities
• Selected Google’s MobileNet SSD v1 architecture1 for 

lightweight object detection and localization
• Iteratively trained network on real images from the ISS and 

images synthetically generated in Unreal Engine
⁃ Conducted via TensorFlow’s Object Detection API2

• Synthetic images allowed us to train on orientations for 
which no real images existed

Target Detection & Relative Az./El. Estimation
1. The trained MobileNet SSD detects and bounds Cygnus 

if it is present

2. Contouring algorithms segment the spacecraft body 
within a localized region

3. The centroid is computed using the first moment of area
4. Relative azimuth and elevation computed from centroid 

and camera intrinsics

Image of Cygnus from ISS
Credit: NASA

Simulated Image of Cygnus
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Metric Validation Set Test Set 

Detection Rate 0.990 0.965 

False Positive Rate 0.047 0.027 

False Negative Rate 0.010 0.035 

Jaccard Coefficient 0.890 0.888 

Conclusions & Future Work
• CNNs are a valid approach to the detection/localization 

problem, even with limited computational power
• Contouring is difficult against a cloudy/noisy Earth
• Higher-fidelity simulated visuals may improve CNN training
• UT continuing partnership with NASA JSC to research the 

viability of CNNs for:
• Full semantic/instance segmentation
• 6-DOF relative pose estimation

Solutions Generated at ~3-4 Hz on Intel Joule 570X Flight Computer
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