Machine Learning in Space: Seeker-1's Intelligent Vision System

Gavin Martin^{*, 1}, Nihal Dhamani^{†, 2}, Carson Schubert^{*, 3}, Pratyush Singh^{*, 4}, Maruthi Akella^{*, 5}

Mission Overview

Seeker-1 (left) & Kenobi (right) Credit: NASA

Northrop Grumman Enhanced Cygnus Spacecraft Credit: NASA

- Seeker-1 is a NASA JSC mission to demonstrate technologies relevant to on-orbit inspection & servicing
- Seeker-1 (a 3U CubeSat) will be deployed from an Enhanced Cygnus cargo vehicle in Summer 2019 - Will perform relative motion experiments around Cygnus
- UT-developed computer vision algorithms must detect and estimate the relative bearing of Cygnus
- Must be done at > 1 Hz (with CPU only)
- Must be robust to varied lighting conditions, any target orientation, and against varied backdrops
- Must be flight-ready and integrated with the Seeker-1 GNC system

Research Background

Space-Based Computer Vision

- The space environment presents many difficulties with respect to computer vision:
- Clouds and Earth generate complex noise patterns
- Lighting is inconsistent and can easily blind the camera or illuminate only half an object
- Low computing power and time constraints can eliminate many solutions viable for Earth-based systems
- Non-cooperative spacecraft have no reflectors or lights to make detection easier

"Intelligent" Cameras on Earth

- Convolutional neural network (CNN) architectures have emerged as capable image classifiers
- More resilient than classical computer vision algorithms in diverse environmental conditions
- CNNs are increasingly used in autonomous applications
- Open-source deep learning frameworks (TensorFlow, PyTorch, etc.) have become very powerful and popular

*Cockrell School of Engineering, [†]College of Natural Sciences | ¹gavinmartin@utexas.edu, ²nihaldhamani@gmail.com, ³carson.schubert14@gmail.com, ⁴pratyushsingh@utexas.edu, ⁵makella@mail.utexas.edu

Methodology

Neural Network Architecture & Training

- Single Shot Detector (SSD) meta-architecture chosen for speed and image processing capabilities
- Selected Google's MobileNet SSD v1 architecture¹ for lightweight object detection and localization
- Iteratively trained network on real images from the ISS and images synthetically generated in Unreal Engine
- Synthetic images allowed us to train on orientations for which no real images existed

Image of Cygnus from ISS Credit: NASA

Target Detection & Relative Az./El. Estimation The trained MobileNet SSD detects and bounds Cygnus

if it is present

Cygnus Confidence: 99.927

- Contouring algorithms segment the spacecraft body within a localized region
- and camera intrinsics

- Conducted via TensorFlow's Object Detection API²

Simulated Image of Cygnus Credit: UT-Austin

The centroid is computed using the first moment of area Relative azimuth and elevation computed from centroid

Det
Fals
Fals

Solutions Generated at ~3-4 Hz on Intel Joule 570X Flight Computer

Conclusions & Future Work

- CNNs are a valid approach to the detection/localization problem, even with limited computational power
- Contouring is difficult against a cloudy/noisy Earth Higher-fidelity simulated visuals may improve CNN training • UT continuing partnership with NASA JSC to research the
- viability of CNNs for:
- Full semantic/instance segmentation
- 6-DOF relative pose estimation

We'd like to thank our supervisors, Drs. Maruthi Akella and Noble Hatten, as well as our sponsors and partners at NASA JSC. We'd also like to give special thanks to Kayvon Khosrowpour, Allison Crow, Zachary Wempe, and the TSL Seeker team for their incredible contributions to the project.

http://arxiv.org/abs/1704.04861.

Results

Acknowledgements

References

[1] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., ... Adam, H. (2017). MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. ArXiv:1704.04861 [Cs]. Retrieved from

[2] Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., ... Murphy, K. (2016). Speed/accuracy trade-offs for modern convolutional object detectors. Retrieved from https://arxiv.org/abs/1611.10012v3.