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Abstract
As emojis become increasingly common in
forms of modern text, the importance of an-
alyzing their intent and usage has increased
as well. This investigation serves to create a
model that learns how emojis are used to then
predict an emoji that would most likely accom-
pany any text. Our raw dataset is comprised of
2.9 million tweets, all from the month of Octo-
ber 2018. Our results showed both the LSTM
model and CNN model heavily outperforming
the baseline. We conclude by providing op-
portunities for further research and ideas for
improving pre-processing of raw tweets.

1 Introduction

Expression of emotions were first used in the early
1990s with emoticons such as :-) and :-(. These
were the first instances when emotional subtext
could be added to a message, adding sarcasm,
warmth, or even disgust. Rather than ”You bet-
ter” having a negative connotation, for example,
one could imply flirting with ”You better ;)”. The
first emoji was created in 1999 by Japanese artist
Shigetaka Kurita.

After their creation, emojis had become so pop-
ular that the Unicode Consortium had decided to
incorporate them into its text standard, the stan-
dard used by all computers. Apple incorporated
emojis into iOS 5, allowing emojis to be used on
mobile platforms. Since that time, emojis have
become engrained in our culture today. Even the
White House uses them (Mosendz, 2014)! As our
language evolves and changes, language models
must adapt and continue to best understand the
textual input provided.

Companies such as Facebook, Google, and
Twitter are all collecting as much information
about users to build a profile on them. How they
feel about certain topics, what their motives are,
how they react, etc. Given young people are even

adjusting texting habits to replace words, for ex-
ample, ”I love you” with ” ”, understanding how
emojis portray intentions and motivations can be
of great importance.

Emojis can also be used in ad targeting con-
necting with users based on their used emojis
(Balonon-Rosen, 2019). Twitter, a large social
network founded in 2006, has long served as a
commonplace for emoji usage. Twitter is also
heavily used in the NLP community for research
for its diversity of topics and ease of access to the
thoughts of many people.

Given a tweet, we encode the text as a sequence
of words, w1, w2, ..., wN, where N is the length
of the tweet. The model takes in the sequence as
input and outputs predicted emoji e of the set of Z
specified emojis. The label of a tweet is chosen as
the most frequent emoji in the given tweet (further
explained in Section 3). The trained model will
be modified and tweaked through hyperparameters
on a development set, and then evaluated against a
separate test set. Accuracy and F1 will be calcu-
lated.

For this investigation, success will be quanti-
fied based on obtaining a higher accuracy than
the baseline given by a simple perceptron model.
Research has shown Recurrent Neural Networks
to be one of the most powerful and useful types
of networks. Different from a Feedforward Neu-
ral Network, Recurrent Neural Networks (RNN)
not only examine current input but also take into
account previous input. We have chosen to im-
plement a RNN with Long Short-Term Mem-
ory (LSTM) units (Hochreiter and Schmidhu-
ber, 1997). The three models chosen to be ex-
tensively trained and tweaked are LSTM, Bi-
directional LSTM, and Convolutional Neural Net-
works (CNN).

Finally, since emoji usage is highly subjective,
a human survey was conducted in an effort to ana-



lyze human emoji usage and compare results with
our predictive model.

2 Related Work

Prior investigations into emoji usage and predic-
tions have been completed. Zhao et al. used tweets
to train a LSTM and CNN classifier based on the
top 50 emojis (Zhao and Zeng, 2017). Andrei et
al. seeked to train simple classifiers such as Sup-
port Vector Machine (SVM) to illustrate their po-
tential and ability to achieve similar accuracies to
more complex models such as CNN (Catalin et al.,
2018). Rather than solely binary sentiment clas-
sification for tweets, Wolny seeked to decipher
tweets and emoji usage into a multi-way emotions
classification (Wolny, 2016). These papers gave
guidance and inspiration to pursuing the strongest
classifier.

3 Data

The Internet Archive released a raw dataset of
tweets from October 2018 scraped from the public
Twitter API (Team). Twitter also has documenta-
tion regarding exploring tweet objects (twi). The
data was preprocessed and split into train, dev, and
test sets with a 80/10/10 split.

3.1 Preprocessing

Since tweets tend to be very noisy, careful plan-
ning and design for preprocessing of the massive
dataset was required. First, only tweets contain-
ing emojis within the text and labeled as English
were considered. Next, the top 30 most frequently
occurring emojis were calculated and dataset was
filtered to only use tweets containing at least one
of those emojis. These steps reduced the dataset
to 2.9 million tweets. For further processing, as
shown in Table 1, there are four types of tweets
that need to be handled: normal tweets, retweets,
replies, and quoted tweets. Normal tweets do not
have any affiliation with other tweets. Retweets
are simply copies of other tweets with ”RT:” and
the twitter handle of the original user at the begin-
ning. Both Reply and Quoted tweets only had the
responding texts in the dataset. As such, the tweets
had to be cleaned heavily to plain text with emojis
with the following steps:

• Removing URLs, usernames, ”RT”, new-
lines, and all punctuation (e.g. @#!*)

• Handling contractions using Twitter-specific
tokenizer (Erikavaris, 2017) (e.g. I’m = i am,
Can’t = can not)

• Searching for and removing emojis not found
in top 30 set

• Removing infrequent words, i.e. words that
appear 10 times or less throughout all tweets

• Converting all text to lowercase

Decisions involving heuristics for labeling,
over-sampling and under-sampling, and count of
emojis in our specified set all had to be made. In
order to evaluate these decisions, a total of 16 dif-
ferent datasets were made and tested on each of
the 5 different models. Reasoning and compar-
isons are outlined below.

3.2 Extracting Label: Duplicates vs
Non-Duplicates

In order to create a fully labeled dataset from the
collection of tweets, the correct label must be ex-
tracted from the text of each tweet and removed
from the text. This is simple enough for a tweet
with just a single emoji as we would use the only
emoji present for the label. For tweets with multi-
ple emojis, a decision was made to use the most
frequently occurring emoji to represent the test.
However, this begged the question of what would
constitute the correct label if there were ties in the
frequency of emojis. The two different approaches
to tackle ties in frequency were (1) duplicate the
text, each with a new label or (2) pick the last oc-
curring emoji as the label. Different datasets of du-
plicates vs. non-duplicates were made in order to
asses which method of extracting labels was bet-
ter. Table 2 shows examples of the different label
extraction methods.

3.3 Sampling vs Non-Sampling

The dataset contained a large class imbalance for
certain emojis. For example, the laughing emoji,

, had over 600,000 tweets. Meanwhile, the hal-
loween pumpkin emoji, , had a mere 50,000
tweets. This presented an issue of the classi-
fier training too heavily on certain emojis, po-
tentially decreasing prediction accuracy for infre-
quent emojis. In order to curb this imbalanced dis-
tribution, under-sampling the frequent emojis was
evaluated. However, there existed a trade-off be-
tween having a large dataset vs. fixing the class



Type of Tweet Example
Normal Tweet Are there actually people who put milk in before the cereal?
Retweet RT @natgeo Retweet to show support for Earth Day!
Reply Tweet Just graduated!!! Congratulations @nick I still have one more final to go...
Quote Tweet ”A&M is the best university in Texas” Actually, no. It’s UT.

Table 1: Examples of the four types of tweets

Tweet Resulting Datapoints
I’m bored text: i am so bored

label:
I’m tired text: i am tired

label:
I’m hungry text: i am hungry

label:
text: i am hungry
label:

I’m sleepy text: i am sleepy
label:

Table 2: Examples of label extraction methods

imbalance with under-sampling. In order to de-
termine which part of the trade off was worth it,
both sampled (50,000 tweets per emoji) and non-
sampled datasets were created to be evaluated and
compared.

3.4 30 vs 15 emojis
Emoji usage is highly subjective and vary dras-
tically depending on the person. This can intro-
duce a great deal of noise and makes it harder for
classifiers to make correct predictions. Addition-
lly, many different emojis expressing similar senti-
ments exist. For example, heart emojis can be eas-
ily interchanged with a double pink heart emoji,

, or a purple heart, . In order to improve accu-
racy and minimize the noise contained within the
data, we chose to explore lowering the size of our
emoji set from 30 to 15. Different datasets with
top 30 and top 15 emojis were created to be eval-
uated and compared.

4 Models

In order to quantify success and determine the best
model for emoji prediction, we compared five dif-
ferent classifiers.

4.1 Baseline Classifier
To determine a starting point for emoji prediction,
a simple perceptron was used as a baseline. The

baseline was used to determine how much room
there was to improve and if different approaches
were improving accuracy. The set of unique words
in all training examples was found and indexed.
Tweets were then indexed for each word and sup-
plied to the perceptron, modifying the weight vec-
tors of each predicted class accordingly.

4.2 Logistic Regression Classifier

Logistic regression is an extension of the linear re-
gression classifier. Linear regressions fit the best
hyperplane and provide a linear interpolation be-
tween points, not extending to multi-class classi-
fication (Molnar, 2019). Determining the thresh-
old on the hyperplane at which one distinguishes
different classes can be tough given training data
that doesn’t have clearly distinct features. Logistic
regression uses a logistic function to squeeze the
output of linear layers into a probability between
0 and 1 of an input being a certain class. In order to
classify multi-class, it divides the problem into N
binary classification problems and determines the
prediction for c1, c2, ..., cN. The highest probabil-
ity returned from the class is tracked and returned
as the predicted class.

Our logistic regression mode was implemented
using the scikit-learn Python library (Pedregosa
et al., 2011). In order to take in input text, word
embeddings were used to represent text in a vec-
tor format. Word embeddings serve the purpose of
encoding input in an N-dimensional space. Each
word has their own embedding with more similar
words (e.g. ”man” and ”boy”) being closer to each
other. Aggregating all and averaging the word em-
beddings of an input text gives an input that can
be piped into the logistic regression. We decided
to use the Twitter GloVe dataset having a vocab of
1.2 million unique ”words” for it was built off of
2 billion tweets (Pennington). It was understood
that this dataset would best understand the simi-
larity between our words as they’re from tweets as
well.



4.3 Convolutional Neural Network

CNNs are similar to multi-class perceptrons con-
taining neurons with weights and biases. How-
ever, CNN’s are different in that rather than having
all fully-connected layers where all neurons in a
layer are connected to all neurons in the previous
layer, they have steps of convolutions and pool-
ing. Convolutions and pooling results in combin-
ing the outputs of convolved neuron cluster at one
layer into a single neuron in the next layer (Cireşan
et al., 2011). Our implementation comes from
the help of Denny Britz (Britz, 2016) and GitHub
user jiegzhan (Jiegzhan, 2018) and looks roughly
similar to Figure 1. As for our word embed-
dings, we had the option of using either GloVe em-
beddings trained specifically for twitter (Penning-
ton) or training our own embeddings from scratch.
The pre-trained word embeddings had vectors for
63% of our total vocabulary. Further analysis re-
vealed that training our own embeddings resulted
in higher accuracy so we opted to train our own
word embeddings from scratch.

Figure 1: Network Representation of CNN (Britz,
2016)

4.4 Recurrent Neural Networks

4.4.1 LSTM Classifier
A Long short-term memory model (LSTM), as
shown in Figure 3, is based on a Recurrent Neu-
ral Network (RNN) architecture (Hochreiter and
Schmidhuber, 1997). An RNN differs from tra-
ditional feed-forward structure in that has feed-
back connections which make it ideal to process
sequences of data, especially text. An LSTM is
an RNN with a cell, input and output gates, and
a forget gates. The gate combinations serves to
regulate the flow of information over certain time
intervals (Siegelmann and Sontag, 1995). For our
implementation, we used to Keras (ker) to im-
plement the LSTM model as shown in Figure 2.
Once again we trained our word embeddings from

Figure 2: LSTM Model implementation in Keras with
embedding dimensions = 300, a dropout layer, an
LSTM layer with 300 hidden units, and a 30-class out-
put layer with Softmax activation.

Figure 3: LSTM model schematic (Kwan-Yuet)

scratch.

4.4.2 Bi-Directional LSTM Classifier
A Bi-Directional LSTM is very similar to the
LSTM described in Section 4.4.1 with one impor-
tant caveat. The Bi-LSTM model duplicates the
first recurrent layer in the network so that there
are two layers of opposite directions mapping to
the same output. The first layer provides data just
like a regular LSTM layer; however, the second
layer provides a reversed copy of the data (Schus-
ter and Paliwal, 1997). The two layer outputs are
then merged with in a specified manner. In our
case, we concatenated the two results. We sus-
pect this architecture to prove useful as the model
could learn on much more context than a regular
LSTM. Once again, we trained word embeddings
from scratch.

5 Results

Not only was this investigation searching for the
best classifier, but also for the best dataset. Accu-
racy is calculated by dividing correct predictions
by total predictions. F1 score is a harmonic aver-



age of precision and recall, with a range between
0.0-1.0, 1.0 being perfect precision and recall. Ac-
curacy and F1 score results for the dev set for all
classifiers are compared in Tables 3 and 4. These
were trained with similar hyperparameters in or-
der to ensure that they could be compared against
one another. Further discussions and observations
are presented below.

Set of 30 Emoji
ND NS ND S D NS D S

PER Acc: 5.66
F1: 0.04

Acc: 6.21
F1: 0.05

Acc: 6.13
F1: 0.04

Acc: 8.04
F1: 0.06

LR Acc: 28.58
F1: 0.21

Acc: 23.23
F1: 0.22

Acc: 27.6
F1: 0.20

Acc: 22.15
F1: 0.21

CNN Acc: 30
F1: 0.30

Acc: 30
F1: 0.30

Acc: 30
F1: 0.30

Acc: 30
F1: 0.30

LSTM Acc: 52.98
F1: 0.52

Acc: 45.82
F1: 0.46

Acc: 48.03
F1: 0.47

Acc: 42.2
F1: 0.42

Bi-LSTM Acc: 30
F1: 0.30

Acc: 45.75
F1: 0.46

Acc: 47.9
F1: 0.47

Acc: 42.1
F1: 0.42

Table 3: Results on dev set for each classifier on all 30
Emoji datasets. ND=Not Duplicate, NS=Not Sampled,
D=Duplicate, S=Sampled

Set of 15 Emoji
ND NS ND S D NS D S

PER Acc: 11.86
F1: 0.09

Acc: 11.46
F1: 0.09

Acc: 9.95
F1: 0.06

Acc: 10.23
F1: 0.05

LR Acc: 37.85
F1: 0.3

Acc: 31.07
F1: 0.3

Acc: 36.5
F1: 0.29

Acc: 30.61
F1: 0.29

CNN Acc: 30
F1: 0.30

Acc: 30
F1: 0.30

Acc: 30
F1: 0.30

Acc: 30
F1: 0.30

LSTM Acc: 59.81
F1: 0.58

Acc: 51.91
F1: 0.52

Acc: 55.74
F1: 0.54

Acc: 47.67
F1: 0.47

Bi-LSTM Acc: 59.91
F1: 0.59

Acc: 50.27
F1: 0.50

Acc: 55.72
F1: 0.54

Acc: 47.5
F1: 0.47

Table 4: Results on dev set for each classifier on all 15
Emoji datasets. ND=Not Duplicate, NS=Not Sampled,
D=Duplicate, S=Sampled

5.1 Duplicates vs. Non-Duplicates
According to tables 3 and 4, non-duplicates out-
performed duplicates in both accuracy and F1
score. It is hypothesized that this may be because
of the noise that occurs when classifiers receive
different labels for the same training data. Com-
paring datasets 30 ND NS and 30 D NS, accuracy
and F1 score jump by 4% and 0.05, respectively.

5.2 Sampling vs. Non-Sampling
Unexpectedly, it appears that non-sampling out-
performed sampling in both accuracy and F1
score. Under-sampling emojis with over 50,000
data points lowered accuracy. This could be be-
cause of the important distinctions in classifiers

Figure 4: Final 15 emojis selected

make with certain data points that it was not able
to capitalize on. Comparing datasets 30 ND NS
and 30 ND S, accuracy and F1 score jump by 6%
and 0.06, respectively.

5.3 30 vs 15 emojis
The classifiers performed better when only pre-
dicting 15 emojis versus 30 emojis. This was as
expected because the classifier had less subjectiv-
ity between emojis being interchangeable and less
room for error with only 15 possible classes. 15
NDS performed the strongest with an accuracy of
51.91% and F1 score of 0.50.

5.4 Final Dataset
A final dataset and model was chosen based on
the results presented in Tables 3 and 4. Figure 4
shows the 15 emojis that were selected.

The final dataset selected:

– 15 emojis. Not sampled, no duplicates
– Size of training set: 1,726,968
– Size of dev and test sets: 215,871

5.5 Final Model and Results
The final model selected was an LSTM. The
model was then further tuned by varying hyper-
parameters in order to achieve higher accuracy.
Accuracies and F1 scores were then calculated for
both the dev and test sets.

The following hyperparameters were used in
the final model:

– Optimizer: ADAM
– Embedding Dimensions: 600
– Hidden Layers: 600
– Batch Size: 128
– Dropout: 0.1
– Epochs: 6

The results, shown in Table 5 for the final model
are quite promising. Given that random guess-
ing gets an accuracy of 6.67% and ours is roughly



Accuracy (%) F1 Score
dev set 61.27 0.6
test set 61.99 0.6

Table 5: Final model results

62%, it is safe to say that we succeeded in pre-
dicting and analyzing Twitter emoji usage, despite
the noisy data and subjective behaviour of emo-
jis. Additionally, the similar accuracies between
the dev and test sets suggest that our model is ro-
bust. The F1 scores are on the lower end of the
spectrum; however, still suggest that our model
is mostly capable of producing low false positives
and low false negatives.

5.6 Human Survey

Naturally, the usage of emojis is inherently sub-
jective. Emojis can be seen as being open to in-
terpretation and can render differently on different
viewing platforms, potentially leading to commu-
nication errors (Miller et al., 2016). Given the ex-
tremely subjective nature, we were further inter-
ested in analyzing how varied emoji usage can be
and how well our model holds up against human
competition.

In order to facilitate this survey, a Google form
(goo) was created with 15 sentences, ranging from
short to long, and with 15 emoji options that the
user could select for each of the sentences. It is
important to note that the form was mainly dis-
tributed to college kids, which could introduce
some bias as emoji usage might differ across gen-
erations. In the end, we were met with 49 total
responses summarized in Table 6.

There were few key observations we took away
from the survey. Even though the survey picked
emoji and predicted emoji were not always they
same, we found that the model predicted emoji
was often the 2nd most frequent picked emoji in
the survey. This again is due to the related na-
ture of certain emojis and the similar sentiments
they share. For instance, the kissy face emoji, ,
and the hearts emoji, , were often picked in-
terchangeably. Additionally, we noticed that the
shorter the sentence, the more likely it was for
both the survey and the model to produce the same
emoji. Finally, upon further analysis we noticed
that certain key words were automatically associ-
ated with emojis. For instance, ’die’ would bring
up the skeleton emoji, , ’red hot’ would bring up

Text Survey Model Pred
I love you

per: 63.3% prob: 27.7%
I hate you

per: 57.1% prob: 35.3%
I cant believe he offered me his coat
to walk on over the puddle per: 46.9% prob: 99.6%
Bless up

per: 89.8% prob: 68.6%
I couldnt believe how beautiful she
looked in the fashion show! per: 49.0% prob: 67.8%
James Harden is a baaad man

per: 24.5% prob: 29.5%
My dad randomly started singing
Old Town Road this morning while
making breakfast

per: 38.8% prob: 18.9%

Why do all my favorite Game of
Thrones characters get killed off?? per: 57.1% prob: 42.6%
Really craving some pizza rn

per: 51.0% prob: 77.0%
If I pay $40 for a haunted house I
better die per: 30.6% prob: 41.7%
Grind don’t stop

per: 61.2% prob: 34.2%
You know boomers had it good be-
cause their go to midlife crisis move
was buying an expensive car

per: 30.6% prob: 54.9%

Y’all wanna talk about ghosting,
let’s talk about jobs you apply for
and never get denied or accepted

per: 28.6% prob: 46.4%

Harden is red hot from 3!
per: 83.7% prob: 49.6%

Table 6: Results from 49 survey responses.

the fire emoji, , and ’bless’ would bring up the
prayer hands emoji, .

6 Conclusion and Future Work

A 50% gain in accuracy was made using the
LSTM model versus the baseline classifier. There
are a few things that could have improved the clas-
sifiers further.

Our approach for sampling included undersam-
pling all classes to 50,000 data points. Instead, we
could explore optimizing the data points chosen
for each class (most words/context) and also using
certain ratios for each emojis frequency. Addition-
ally, we could explore oversampling as a method
as well.

Tweets will continue to be very noisy and sub-
jective with emoji usage. Further analysis of fil-
tering tweets for their important keywords and re-
moving noise could help classifiers learn more dis-
tinct features. Many emojis are interchangeable
and having different meanings to different people
making emoji prediction perfect near impossible.
In the future, potentially grouping emojis together
with similar meanings or creating vector represen-



tations of them, e.g. different colored hearts or
angry emojis, could greatly increase accuracy.

Our heuristic of using the most frequent emoji,
and in case of tie, most recent emoji, for select-
ing labels could potentially be incorrect in some
cases where the emoji selected doesn’t fully rep-
resent the text. Another potential avenue to ex-
plore would be determining where emojis fit best
in tweets. Not only classifying text with the best
accompanying emoji, but also incorporating the
spatial aspect of emojis into training and predict-
ing their location. In order to best predict emoji us-
age of a specific user, models could even be trained
specifically to that user given enough training data.
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Dan C. Cireşan, Ueli Meier, Jonathan Masci, Luca M.
Gambardella, and Jürgen Schmidhuber. 2011. Flex-
ible, high performance convolutional neural net-
works for image classification. In Proceedings of
the Twenty-Second International Joint Conference
on Artificial Intelligence - Volume Volume Two, IJ-
CAI’11, pages 1237–1242. AAAI Press.

Erikavaris. 2017. erikavaris/tokenizer.

Sepp Hochreiter and Jrgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9:1735–
80.

Jiegzhan. 2018. jiegzhan/multi-class-text-
classification-cnn.

Ho Kwan-Yuet. Deep neural networks with word-
embedding.

Hannah Miller, Jacob Thebault-Spieker, Shuo Chang,
Isaac Johnson, Loren Terveen, and Brent Hecht.
2016. ”blissfully happy” or ”ready to fight”: Vary-
ing interpretations of emoji. In Proceedings of the
10th International Conference on Web and Social
Media, ICWSM 2016, pages 259–268. AAAI press.

Christoph Molnar. 2019. Interpretable machine learn-
ing.

Polly Mosendz. 2014. The white house learned emoji
to speak millennial.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Jeffrey Pennington. [link].

M. Schuster and K. K. Paliwal. 1997. Bidirectional re-
current neural networks. IEEE Transactions on Sig-
nal Processing, 45(11):2673–2681.

H.T. Siegelmann and E.D. Sontag. 1995. On the com-
putational power of neural nets. J. Comput. Syst.
Sci., 50(1):132–150.

Archive Team. archiveteam-twitter-stream-2018-10.

Wieslaw Wolny. 2016. Emotion analysis of twitter data
that use emoticons and emoji ideograms. In ISD.

Lian Zhao and Connie Zeng. 2017. Using neural net-
works to predict emoji usage from twitter data.

https://www.google.com/forms/about/
https://keras.io/
https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/tweet-object
https://www.marketplace.org/2018/02/16/emojis-change-how-we-communicate-advertisers-track/
https://www.marketplace.org/2018/02/16/emojis-change-how-we-communicate-advertisers-track/
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-210
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-210
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-210
https://github.com/erikavaris/tokenizer
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://github.com/jiegzhan/multi-class-text-classification-cnn
https://github.com/jiegzhan/multi-class-text-classification-cnn
https://shorttext.readthedocs.io/en/latest/tutorial_nnlib.html
https://shorttext.readthedocs.io/en/latest/tutorial_nnlib.html
https://christophm.github.io/interpretable-ml-book/logistic.html
https://christophm.github.io/interpretable-ml-book/logistic.html
https://www.theatlantic.com/technology/archive/2014/10/why-the-white-house-is-using-emojis/381307/
https://www.theatlantic.com/technology/archive/2014/10/why-the-white-house-is-using-emojis/381307/
https://nlp.stanford.edu/projects/glove/
https://doi.org/10.1109/78.650093
https://doi.org/10.1109/78.650093
https://doi.org/10.1006/jcss.1995.1013
https://doi.org/10.1006/jcss.1995.1013
https://archive.org/details/archiveteam-twitter-stream-2018-10

